Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Bioinspir Biomim ; 19(3)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38507788

RESUMO

Recognizing humans' unmatched robustness, adaptability, and learning abilities across anthropomorphic movements compared to robots, we find inspiration in the simultaneous development of both morphology and cognition observed in humans. We utilize optimal control principles to train a muscle-actuated human model for both balance and squat jump tasks in simulation. Morphological development is introduced through abrupt transitions from a 4 year-old to a 12 year-old morphology, ultimately shifting to an adult morphology. We create two versions of the 4 year-old and 12 year-old models- one emulating human ontogenetic development and another uniformly scaling segment lengths and related parameters. Our results show that both morphological development strategies outperform the non-development path, showcasing enhanced robustness to perturbations in the balance task and increased jump height in the squat jump task. Our findings challenge existing research as they reveal that starting with initial robot designs that do not inherently facilitate learning and incorporating abrupt changes in their morphology can still lead to improved results, provided these morphological adaptations draw inspiration from biological principles.


Assuntos
Movimento , Músculo Esquelético , Adulto , Humanos , Pré-Escolar , Criança , Postura , Simulação por Computador , Modelos Biológicos
2.
Artigo em Inglês | MEDLINE | ID: mdl-38244146

RESUMO

The aim of this study was to design physics-preserving and precise surrogate models of the nonlinear elastic behaviour of an intervertebral disc (IVD). Based on artificial force-displacement data sets from detailed finite element (FE) disc models, we used greedy kernel and polynomial approximations of second, third and fourth order to train surrogate models for the scalar force-torque -potential. Doing so, the resulting models of the elastic IVD responses ensured the conservation of mechanical energy through their structure. At the same time, they were capable of predicting disc forces in a physiological range of motion and for the coupling of all six degrees of freedom of an intervertebral joint. The performance of all surrogate models for a subject-specific L4[Formula: see text]5 disc geometry was evaluated both on training and test data obtained from uncoupled (one-dimensional), weakly coupled (two-dimensional), and random movement trajectories in the entire six-dimensional (6d) physiological displacement range, as well as on synthetic kinematic data. We observed highest precisions for the kernel surrogate followed by the fourth-order polynomial model. Both clearly outperformed the second-order polynomial model which is equivalent to the commonly used stiffness matrix in neuro-musculoskeletal simulations. Hence, the proposed model architectures have the potential to improve the accuracy and, therewith, validity of load predictions in neuro-musculoskeletal spine models.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38126259

RESUMO

The muscle spindle is an essential proprioceptor, significantly involved in sensing limb position and movement. Although biological spindle models exist for years, the gold-standard for motor control in biomechanics are still sensors built of homogenized spindle output models due to their simpler combination with neuro-musculoskeletal models. Aiming to improve biomechanical simulations, this work establishes a more physiological model of the muscle spindle, aligned to the advantage of easy integration into large-scale musculoskeletal models. We implemented four variations of a spindle model in Matlab/Simulink®: the Mileusnic et al. (2006) model, Mileusnic model without mass, our enhanced Hill-type model, and our enhanced Hill-type model with parallel damping element (PDE). Different stretches in the intrafusal fibers were simulated in all model variations following the spindle afferent recorded in previous experiments in feline soleus muscle. Additionally, the enhanced Hill-type models had their parameters extensively optimized to match the experimental conditions, and the resulting model was validated against data from rats' triceps surae muscle. As result, the Mileusnic models present a better overall performance generating the afferent firings compared to the common data evaluated. However, the enhanced Hill-type model with PDE exhibits a more stable performance than the original Mileusnic model, at the same time that presents a well-tuned Hill-type model as muscle spindle fibers, and also accounts for real sarcomere force-length and force-velocity aspects. Finally, our activation dynamics is similar to the one applied to Hill-type model for extrafusal fibers, making our proposed model more easily integrated in multi-body simulations.

4.
Front Bioeng Biotechnol ; 11: 1293705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155925

RESUMO

Introduction: A common hand injury in American football, rugby and basketball is the so-called jersey finger injury (JFI), in which an eccentric overextension of the distal interphalangeal joint leads to an avulsion of the connected musculus flexor digitorum profundus (FDP) tendon. In the field of automotive safety assessment, finite element (FE) neuromuscular human body models (NHBMs) have been validated and are employed to evaluate different injury types related to car crash scenarios. The goal of this study is to show, how such a model can be modified to assess JFIs by adapting the hand of an FE-NHBM for the computational analysis of tendon strains during a generalized JFI load case. Methods: A jersey finger injury criterion (JFIC) covering the injury mechanisms of tendon straining and avulsion was defined based on biomechanical experiments found in the literature. The hand of the Total Human Model for Safety (THUMS) version 3.0 was combined with the musculature of THUMS version 5.03 to create a model with appropriate finger mobility. Muscle routing paths of FDP and musculus flexor digitorum superficialis (FDS) as well as tendon material parameters were optimized using literature data. A simplified JFI load case was simulated as the gripping of a cylindrical rod with finger flexor activation levels between 0% and 100%, which was then retracted with the velocity of a sprinting college football player to forcefully open the closed hand. Results: The optimization of the muscle routing node positions and tendon material parameters yielded good results with minimum normalized mean absolute error values of 0.79% and 7.16% respectively. Tendon avulsion injuries were detected in the middle and little finger for muscle activation levels of 80% and above, while no tendon or muscle strain injuries of any kind occurred. Discussion: The presented work outlines the steps necessary to adapt the hand model of a FE-NHBM for the assessment of JFIs using a newly defined injury criterion called the JFIC. The injury assessment results are in good agreement with documented JFI symptoms. At the same time, the need to rethink commonly asserted paradigms concerning the choice of muscle material parameters is highlighted.

5.
Sci Rep ; 13(1): 19575, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949892

RESUMO

In legged locomotion, muscles undergo damped oscillations in response to the leg contacting the ground (an impact). How muscle oscillates varies depending on the impact situation. We used a custom-made frame in which we clamped an isolated rat muscle (M. gastrocnemius medialis and lateralis: GAS) and dropped it from three different heights and onto two different ground materials. In fully activated GAS, the dominant eigenfrequencies were 163 Hz, 265 Hz, and 399 Hz, which were signficantly higher (p < 0.05) compared to the dominant eigenfrequencies in passive GAS: 139 Hz, 215 Hz, and 286 Hz. In general, neither changing the falling height nor ground material led to any significant eigenfrequency changes in active nor passive GAS, respectively. To trace the eigenfrequency values back to GAS stiffness values, we developed a 3DoF model. The model-predicted GAS muscle eigenfrequencies matched well with the experimental values and deviated by - 3.8%, 9.0%, and 4.3% from the passive GAS eigenfrequencies and by - 1.8%, 13.3%, and - 1.5% from the active GAS eigenfrequencies. Differences between the frequencies found for active and passive muscle impact situations are dominantly due to the attachment of myosin heads to actin.


Assuntos
Locomoção , Músculo Esquelético , Ratos , Animais , Músculo Esquelético/fisiologia , Locomoção/fisiologia
6.
Sci Rep ; 13(1): 13219, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580375

RESUMO

Walking on unknown and rough terrain is challenging for (bipedal) robots, while humans naturally cope with perturbations. Therefore, human strategies serve as an excellent inspiration to improve the robustness of robotic systems. Neuromusculoskeletal (NMS) models provide the necessary interface for the validation and transfer of human control strategies. Reflexes play a crucial part during normal locomotion and especially in the face of perturbations, and provide a simple, transferable, and bio-inspired control scheme. Current reflex-based NMS models are not robust to unexpected perturbations. Therefore, in this work, we propose a bio-inspired improvement of a widely used NMS walking model. In humans, different muscles show an increase in activation in anticipation of the landing at the end of the swing phase. This preactivation is not integrated in the used reflex-based walking model. We integrate this activation by adding an additional feedback loop and show that the landing is adapted and the robustness to unexpected step-down perturbations is markedly improved (from 3 to 10 cm). Scrutinizing the effect, we find that the stabilizing effect is caused by changed knee kinematics. Preactivation, therefore, acts as an accommodation strategy to cope with unexpected step-down perturbations, not requiring any detection of the perturbation. Our results indicate that such preactivation can potentially enable a bipedal system to react adequately to upcoming unexpected perturbations and is hence an effective adaptation of reflexes to cope with rough terrain. Preactivation can be ported to robots by leveraging the reflex-control scheme and improves the robustness to step-down perturbation without the need to detect the perturbation. Alternatively, the stabilizing mechanism can also be added in an anticipatory fashion by applying an additional knee torque to the contralateral knee.


Assuntos
Músculo Esquelético , Caminhada , Humanos , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Locomoção , Reflexo/fisiologia , Joelho , Fenômenos Biomecânicos , Eletromiografia , Marcha/fisiologia
7.
Biomech Model Mechanobiol ; 22(6): 2003-2032, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37542621

RESUMO

Nowadays, active human body models are becoming essential tools for the development of integrated occupant safety systems. However, their broad application in industry and research is limited due to the complexity of incorporated muscle controllers, the long simulation runtime, and the non-regular use of physiological motor control approaches. The purpose of this study is to address the challenges in all indicated directions by implementing a muscle controller with several physiologically inspired control strategies into an open-source extended Hill-type muscle model formulated as LS-DYNA user-defined umat41 subroutine written in the Fortran programming language. This results in increased usability, runtime performance and physiological accuracy compared to the standard muscle material existing in LS-DYNA. The proposed controller code is verified with extensive experimental data that include findings for arm muscles, the cervical spine region, and the whole body. Selected verification experiments cover three different muscle activation situations: (1) passive state, (2) open-loop and closed-loop muscle activation, and (3) reflexive behaviour. Two whole body finite element models, the 50th percentile female VIVA OpenHBM and the 50th percentile male THUMS v5, are used for simulations, complemented by the simplified arm model extracted from the 50th percentile male THUMS v3. The obtained results are evaluated additionally with the CORrelation and Analysis methodology and the mean squared error method, showing good to excellent biofidelity and sufficient agreement with the experimental data. It was shown additionally how the integrated controller allows simplified mimicking of the movements for similar musculoskeletal models using the parameters transfer method. Furthermore, the Hill-type muscle model presented in this paper shows better kinematic behaviour even in the passive case compared to the existing one in LS-DYNA due to its improved damping and elastic properties. These findings provide a solid evidence base motivating the application of the enhanced muscle material with the internal controller in future studies with Active Human Body Models under different loading conditions.


Assuntos
Modelos Biológicos , Músculos , Masculino , Humanos , Feminino , Músculos/fisiologia , Simulação por Computador , Vértebras Cervicais , Fenômenos Biomecânicos , Análise de Elementos Finitos
8.
Front Physiol ; 14: 1135531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324394

RESUMO

Purpose: Inverse-dynamics (ID) analysis is an approach widely used for studying spine biomechanics and the estimation of muscle forces. Despite the increasing structural complexity of spine models, ID analysis results substantially rely on accurate kinematic data that most of the current technologies are not capable to provide. For this reason, the model complexity is drastically reduced by assuming three degrees of freedom spherical joints and generic kinematic coupling constraints. Moreover, the majority of current ID spine models neglect the contribution of passive structures. The aim of this ID analysis study was to determine the impact of modelled passive structures (i.e., ligaments and intervertebral discs) on remaining joint forces and torques that muscles must balance in the functional spinal unit. Methods: For this purpose, an existing generic spine model developed for the use in the demoa software environment was transferred into the musculoskeletal modelling platform OpenSim. The thoracolumbar spine model previously used in forward-dynamics (FD) simulations provided a full kinematic description of a flexion-extension movement. By using the obtained in silico kinematics, ID analysis was performed. The individual contribution of passive elements to the generalised net joint forces and torques was evaluated in a step-wise approach increasing the model complexity by adding individual biological structures of the spine. Results: The implementation of intervertebral discs and ligaments has significantly reduced compressive loading and anterior torque that is attributed to the acting net muscle forces by -200% and -75%, respectively. The ID model kinematics and kinetics were cross-validated against the FD simulation results. Conclusion: This study clearly shows the importance of incorporating passive spinal structures on the accurate computation of remaining joint loads. Furthermore, for the first time, a generic spine model was used and cross-validated in two different musculoskeletal modelling platforms, i.e., demoa and OpenSim, respectively. In future, a comparison of neuromuscular control strategies for spinal movement can be investigated using both approaches.

9.
Sci Rep ; 13(1): 4559, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941316

RESUMO

Muscle fibres possess unique visco-elastic properties, which generate a stabilising zero-delay response to unexpected perturbations. This instantaneous response-termed "preflex"-mitigates neuro-transmission delays, which are hazardous during fast locomotion due to the short stance duration. While the elastic contribution to preflexes has been studied extensively, the function of fibre viscosity due to the force-velocity relation remains unknown. In this study, we present a novel approach to isolate and quantify the preflex force produced by the force-velocity relation in musculo-skeletal computer simulations. We used our approach to analyse the muscle response to ground-level perturbations in simulated vertical hopping. Our analysis focused on the preflex-phase-the first 30 ms after impact-where neuronal delays render a controlled response impossible. We found that muscle force at impact and dissipated energy increase with perturbation height, helping reject the perturbations. However, the muscle fibres reject only 15% of step-down perturbation energy with constant stimulation. An open-loop rising stimulation, observed in locomotion experiments, amplified the regulatory effects of the muscle fibre's force-velocity relation, resulting in 68% perturbation energy rejection. We conclude that open-loop neuronal tuning of muscle activity around impact allows for adequate feed-forward tuning of muscle fibre viscous capacity, facilitating energy adjustment to unexpected ground-level perturbations.


Assuntos
Sistema Musculoesquelético , Locomoção/fisiologia , Fibras Musculares Esqueléticas , Simulação por Computador , Fatores de Tempo , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia
10.
Biomech Model Mechanobiol ; 22(2): 669-694, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36602716

RESUMO

In spine research, two possibilities to generate models exist: generic (population-based) models representing the average human and subject-specific representations of individuals. Despite the increasing interest in subject specificity, individualisation of spine models remains challenging. Neuro-musculoskeletal (NMS) models enable the analysis and prediction of dynamic motions by incorporating active muscles attaching to bones that are connected using articulating joints under the assumption of rigid body dynamics. In this study, we used forward-dynamic simulations to compare a generic NMS multibody model of the thoracolumbar spine including fully articulated vertebrae, detailed musculature, passive ligaments and linear intervertebral disc (IVD) models with an individualised model to assess the contribution of individual biological structures. Individualisation was achieved by integrating skeletal geometry from computed tomography and custom-selected muscle and ligament paths. Both models underwent a gravitational settling process and a forward flexion-to-extension movement. The model-specific load distribution in an equilibrated upright position and local stiffness in the L4/5 functional spinal unit (FSU) is compared. Load sharing between occurring internal forces generated by individual biological structures and their contribution to the FSU stiffness was computed. The main finding of our simulations is an apparent shift in load sharing with individualisation from an equally distributed element contribution of IVD, ligaments and muscles in the generic spine model to a predominant muscle contribution in the individualised model depending on the analysed spine level.


Assuntos
Disco Intervertebral , Vértebras Lombares , Humanos , Vértebras Lombares/fisiologia , Suporte de Carga/fisiologia , Fenômenos Biomecânicos , Ligamentos/fisiologia , Disco Intervertebral/fisiologia , Músculos/fisiologia , Rotação , Modelos Biológicos , Análise de Elementos Finitos
11.
J Mech Behav Biomed Mater ; 135: 105463, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36137370

RESUMO

Even though significant efforts in the field of injury detection with finite element active human body models (FE AHBMs) have been made, injuries of the muscle-tendon unit (MTU) have not yet been taken into consideration. Therefore, the goal of this study was to define a muscle strain injury criterion (MSIC) to evaluate the damage sustained by the musculature during muscle driven movement scenarios. The MSIC was derived from biomechanical tests found in the literature and the proposed threshold values were substantiated through a comparison to an estimate of the ultimate tensile strength of human skeletal muscle and the forces acting on the biceps femoris long head muscle during one sprinting gait cycle. The application of the MSIC to state-of-the-art FE AHBMs was demonstrated by evaluating the strain injury severity of selected neck muscles of a full-body AHBM during two seat rotation load cases. The results of the MSIC substantiation suggest that all three injury threshold values proposed in this work fall in a plausible corridor of forces acting on the MTU. The combined results of the AHBM simulations indicate that neither of the two examined seat rotations are likely to cause strain injury to the neck muscles and that the proposed MSIC can easily be applied to current AHBMs without further modification of the model architecture or the muscle parameters. The MSIC was also used to formulate a hypothesis on the aetiology of muscle strain injuries, through which it was demonstrated that material inhomogeneities in the MTU might be the cause for strain injuries sustained during otherwise physiological movements. This work is a first step in the direction of the definition of a wholistic injury criterion for the human skeletal muscle fibre.


Assuntos
Corpo Humano , Músculo Esquelético , Fenômenos Biomecânicos , Análise de Elementos Finitos , Marcha/fisiologia , Humanos , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia , Tendões/fisiologia
12.
Biomed Eng Online ; 21(1): 25, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35429975

RESUMO

BACKGROUND: Reflexive responses to head-neck perturbations affect the injury risk in many different situations ranging from sports-related impact to car accident scenarios. Although several experiments have been conducted to investigate these head-neck responses to various perturbations, it is still unclear why and how individuals react differently and what the implications of these different responses across subjects on the potential injuries might be. Therefore, we see a need for both experimental data and biophysically valid computational Human Body Models with bio-inspired muscle control strategies to understand individual reflex responses better. METHODS: To address this issue, we conducted perturbation experiments of the head-neck complex and used this data to examine control strategies in a simulation model. In the experiments, which we call 'falling heads' experiments, volunteers were placed in a supine and a prone position on a table with an additional trapdoor supporting the head. This trapdoor was suddenly released, leading to a free-fall movement of the head until reflexive responses of muscles stopped the downwards movement. RESULTS: We analysed the kinematic, neuronal and dynamic responses for all individuals and show their differences for separate age and sex groups. We show that these results can be used to validate two simple reflex controllers which are able to predict human biophysical movement and modulate the response necessary to represent a large variability of participants. CONCLUSIONS: We present characteristic parameters such as joint stiffness, peak accelerations and latency times. Based on this data, we show that there is a large difference in the individual reflexive responses between participants. Furthermore, we show that the perturbation direction (supine vs. prone) significantly influences the measured kinematic quantities. Finally, 'falling heads' experiments data are provided open-source to be used as a benchmark test to compare different muscle control strategies and to validate existing active Human Body Models directly.


Assuntos
Cabeça , Pescoço , Reflexo , Fenômenos Biomecânicos , Eletromiografia , Cabeça/fisiologia , Humanos , Pescoço/fisiologia , Reflexo/fisiologia
13.
Sci Rep ; 11(1): 23638, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880308

RESUMO

Legged locomotion has evolved as the most common form of terrestrial locomotion. When the leg makes contact with a solid surface, muscles absorb some of the shock-wave accelerations (impacts) that propagate through the body. We built a custom-made frame to which we fixated a rat (Rattus norvegicus, Wistar) muscle (m. gastrocnemius medialis and lateralis: GAS) for emulating an impact. We found that the fibre material of the muscle dissipates between 3.5 and [Formula: see text] ranging from fresh, fully active to passive muscle material, respectively. Accordingly, the corresponding dissipated energy in a half-sarcomere ranges between 10.4 and [Formula: see text], respectively. At maximum activity, a single cross-bridge would, thus, dissipate 0.6% of the mechanical work available per ATP split per impact, and up to 16% energy in common, submaximal, activities. We also found the cross-bridge stiffness as low as [Formula: see text], which can be explained by the Coulomb-actuating cross-bridge part dominating the sarcomere stiffness. Results of the study provide a deeper understanding of contractile dynamics during early ground contact in bouncy gait.


Assuntos
Locomoção , Músculo Esquelético/fisiologia , Animais , Contração Muscular/fisiologia , Ratos , Ratos Wistar
14.
R Soc Open Sci ; 8(9): 201839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34631115

RESUMO

Active goal-directed motion requires real-time adjustment of control signals depending on the system's status, also known as control. The amount of information that needs to be processed depends on the desired motion and control, and on the system's morphology. The morphology of the system may directly effectuate or support the desired motion. This morphology-based reduction to the neuronal 'control effort' can be quantified by a novel information-entropy-based approach. Here, we apply this novel measure of 'control effort' to active microswimmers of different morphology. Their motion is a combination of directed deterministic and stochastic motion. In spherical microswimmers, the active propulsion leads to linear velocities. Active propulsion of asymmetric L-shaped particles leads to circular or-on tilted substrates-directed motion. Thus, the difference in shape, i.e. the morphology of the particles, directly influence the motion. Here, we quantify how this morphology can be exploited by control schemes for the purpose of steering the particles towards targets. Using computer simulations, we found in both cases a significantly lower control effort for L-shaped particles. However, certain movements can only be achieved by spherical particles. This demonstrates that a suitably designed microswimmer's morphology might be exploited to perform specific tasks.

15.
Comput Biol Med ; 135: 104528, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34166878

RESUMO

A variety of medical imaging procedures, cadaver experiments, and computer models have been utilized to capture, depict, and understand the motion of the human lumbar spine. Particular interest lies in assessing the relative movement between two adjacent vertebrae, which can be represented by a temporal evolution of finite helical axes (FHA). Mathematically, this FHA evolution constitutes a seven-dimensional quantity: one dimension for the time, two for the (normalized) direction vector, another two for the (unique) position vector, as well as one for each the angle of rotation around and the amount of translation along the axis. Predominantly in the literature, however, movements are assumed to take place in certain physiological planes on which FHA are projected. The resulting three-dimensional quantity - the so-called centrode - is easily presentable but leaves out substantial pieces of available data. Here, we investigate and assess several possibilities to visualize subsets of FHA data of increasing dimensionality. Finally, we utilize an agglomerative hierarchical clustering algorithm and propose a novel visualization technique, namely the quiver principal axis plot (QPAP), to depict the entirety of information inherent to hundreds or thousands of FHA. The QPAP method is applied to flexion-extension, lateral bending, and axial rotation movements of a lumbar spine within both a reduced model as well as a complex upper body system.


Assuntos
Vértebras Lombares , Fenômenos Biomecânicos , Análise por Conglomerados , Humanos , Vértebras Lombares/diagnóstico por imagem , Amplitude de Movimento Articular , Rotação
17.
Front Bioeng Biotechnol ; 9: 557761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816445

RESUMO

Recent studies suggest that transitory blood flow restriction (BFR) may improve the outcomes of training from anatomical (hypertrophy) and neural control perspectives. Whilst the chronic consequences of BFR on local metabolism and tissue adaptation have been extensively investigated, its acute effects on motor control are not yet fully understood. In this study, we compared the neuromechanical effects of continuous BFR against non-restricted circulation (atmospheric pressure-AP), during isometric elbow flexions. BFR was achieved applying external pressure either between systolic and diastolic (lower pressure-LP) or 1.3 times the systolic pressure (higher pressure-HP). Three levels of torque (15, 30, and 50% of the maximal voluntary contraction-MVC) were combined with the three levels of pressure for a total of 9 (randomized) test cases. Each condition was repeated 3 times. The protocol was administered to 12 healthy young adults. Neuromechanical measurements (torque and high-density electromyography-HDEMG) and reported discomfort were used to investigate the response of the central nervous system to BFR. The investigated variables were: root mean square (RMS), and area under the curve in the frequency domain-for the torque, and average RMS, median frequency and average muscle fibres conduction velocity-for the EMG. The discomfort caused by BFR was exacerbated by the level of torque and accumulated over time. The torque RMS value did not change across conditions and repetitions. Its spectral content, however, revealed a decrease in power at the tremor band (alpha-band, 5-15 Hz) which was enhanced by the level of pressure and the repetition number. The EMG amplitude showed no differences whilst the median frequency and the conduction velocity decreased over time and across trials, but only for the highest levels of torque and pressure. Taken together, our results show strong yet transitory effects of BFR that are compatible with a motor neuron pool inhibition caused by increased activity of type III and IV afferences, and a decreased activity of spindle afferents. We speculate that a compensation of the central drive may be necessary to maintain the mechanical output unchanged, despite disturbances in the afferent volley to the motor neuron pool.

18.
J Theor Biol ; 523: 110714, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-33862096

RESUMO

The maximum running speed of legged animals is one evident factor for evolutionary selection-for predators and prey. Therefore, it has been studied across the entire size range of animals, from the smallest mites to the largest elephants, and even beyond to extinct dinosaurs. A recent analysis of the relation between animal mass (size) and maximum running speed showed that there seems to be an optimal range of body masses in which the highest terrestrial running speeds occur. However, the conclusion drawn from that analysis-namely, that maximum speed is limited by the fatigue of white muscle fibres in the acceleration of the body mass to some theoretically possible maximum speed-was based on coarse reasoning on metabolic grounds, which neglected important biomechanical factors and basic muscle-metabolic parameters. Here, we propose a generic biomechanical model to investigate the allometry of the maximum speed of legged running. The model incorporates biomechanically important concepts: the ground reaction force being counteracted by air drag, the leg with its gearing of both a muscle into a leg length change and the muscle into the ground reaction force, as well as the maximum muscle contraction velocity, which includes muscle-tendon dynamics, and the muscle inertia-with all of them scaling with body mass. Put together, these concepts' characteristics and their interactions provide a mechanistic explanation for the allometry of maximum legged running speed. This accompanies the offering of an explanation for the empirically found, overall maximum in speed: In animals bigger than a cheetah or pronghorn, the time that any leg-extending muscle needs to settle, starting from being isometric at about midstance, at the concentric contraction speed required for running at highest speeds becomes too long to be attainable within the time period of a leg moving from midstance to lift-off. Based on our biomechanical model, we, thus, suggest considering the overall speed maximum to indicate muscle inertia being functionally significant in animal locomotion. Furthermore, the model renders possible insights into biological design principles such as differences in the leg concept between cats and spiders, and the relevance of multi-leg (mammals: four, insects: six, spiders: eight) body designs and emerging gaits. Moreover, we expose a completely new consideration regarding the muscles' metabolic energy consumption, both during acceleration to maximum speed and in steady-state locomotion.


Assuntos
Corrida , Animais , Fenômenos Biomecânicos , Gatos , Marcha , Locomoção , Músculo Esquelético
20.
Biol Cybern ; 115(1): 7-37, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33590348

RESUMO

A key problem for biological motor control is to establish a link between an idea of a movement and the generation of a set of muscle-stimulating signals that lead to the movement execution. The number of signals to generate is thereby larger than the body's mechanical degrees of freedom in which the idea of the movement may be easily expressed, as the movement is actually executed in this space. A mathematical formulation that provides a solving link is presented in this paper in the form of a layered, hierarchical control architecture. It is meant to synthesise a wide range of complex three-dimensional muscle-driven movements. The control architecture consists of a 'conceptional layer', where the movement is planned, a 'structural layer', where the muscles are stimulated, and between both an additional 'transformational layer', where the muscle-joint redundancy is resolved. We demonstrate the operativeness by simulating human stance and squatting in a three-dimensional digital human model (DHM). The DHM considers 20 angular DoFs and 36 Hill-type muscle-tendon units (MTUs) and is exposed to gravity, while its feet contact the ground via reversible stick-slip interactions. The control architecture continuously stimulates all MTUs ('structural layer') based on a high-level, torque-based task formulation within its 'conceptional layer'. Desired states of joint angles (postural plan) are fed to two mid-level joint controllers in the 'transformational layer'. The 'transformational layer' communicates with the biophysical structures in the 'structural layer' by providing direct MTU stimulation contributions and further input signals for low-level MTU controllers. Thereby, the redundancy of the MTU stimulations with respect to the joint angles is resolved, i.e. a link between plan and execution is established, by exploiting some properties of the biophysical structures modelled. The resulting joint torques generated by the MTUs via their moment arms are fed back to the conceptional layer, closing the high-level control loop. Within our mathematical formulations of the Jacobian matrix-based layer transformations, we identify the crucial information for the redundancy solution to be the muscle moment arms, the stiffness relations of muscle and tendon tissue within the muscle model, and the length-stimulation relation of the muscle activation dynamics. The present control architecture allows the straightforward feeding of conceptional movement task formulations to MTUs. With this approach, the problem of movement planning is eased, as solely the mechanical system has to be considered in the conceptional plan.


Assuntos
Músculo Esquelético , Tendões , Braço , Fenômenos Biomecânicos , Humanos , Modelos Biológicos , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...